Analysis of Spawning Behaviour and Growth Indices of Zebrafish in Response to CO2 Acidification
Main Article Content
Abstract
The growth parameters and spawning behaviour of zebrafish in response to CO2 acidification demonstrated differential results. The growth performance of zebrafish is determined by key indices, BWG, SGR, CF and CV. BWG shows subtle gain in 1500 µatm group (0.09 g) and a slight decrease in 2200 µatm group (0.056 g). SGR index showed similar pattern of results, whereas CF showed a gradual decrease. The other growth index CV again showed an increase in 1500 µatm group and slight decrease in 2200 µatm group in comparison to the control group. A significant decrease in the performance of spawning behaviour was observed. At 96 hpf, the survival rate of the embryos showed a significant hit and the number of dead embryos increased dose dependently. The embryos exposed to CO2 showed a decrease in hatching rate with the increase in dose of CO2. The CO2 acidification causes notable changes in the growth and significant effect on reproductive behaviour.
Article Details
References
Abdollahpour, Hamed, Bahram Falahatkar, Iraj Efatpanah, Bahman Meknatkhah, and Glen Van Der Kraak. 2018. “Influence of Thyroxine on Spawning Performance and Larval Development of Sterlet Sturgeon Acipenser Ruthenus.” Aquaculture 497 (December): 134–39. https://doi.org/10.1016/J.AQUACULTURE.2018.07.033.
Aze, Tracy, James Barry, Richard Bellerby, and Secretariat of the Convention on Biological Diversity. 2014. “An Updated Synthesis of the Impacts of Ocean Acidification on Marine Biodiversity,” 99.
Baloi, Manecas, Cristina V A de Carvalho, Fabio C Sterzelecki, Gabriel Passini, and Vinícius R Cerqueira. 2016. “Effects of Feeding Frequency on Growth, Feed Efficiency and Body Composition of Juveniles Brazilian Sardine, Sardinella Brasiliensis (Steindacher 1879).” Aquaculture Research 47 (2): 554–60. https://doi.org/10.1111/ARE.12514.
Barry, James P., and Stephen Widdicombe. 2011. “Effects of Ocean Acidification on Marine Biodiversity and Ecosystem Function.” Ocean Acidification, September. https://doi.org/10.1093/OSO/9780199591091.003.0015.
Baumann, Hannes, Stephanie C. Talmage, and Christopher J. Gobler. 2011. “Reduced Early Life Growth and Survival in a Fish in Direct Response to Increased Carbon Dioxide.” Nature Climate Change 2011 2:1 2 (1): 38–41. https://doi.org/10.1038/nclimate1291.
Baumann, Soeur Denise, and Marie-Hélène Gillig. 2012. “Comment Transmettre Un Patrimoine Séculaire sans Perdre Son Esprit Séculier ?” Le Journal de l’école de Paris Du Management 93 (1): 38. https://doi.org/10.3917/JEPAM.093.0038.
Bertram, Michael G., Minna Saaristo, John B. Baumgartner, Christopher P. Johnstone, Mayumi Allinson, Graeme Allinson, and Bob B.M. Wong. 2015. “Sex in Troubled Waters: Widespread Agricultural Contaminant Disrupts Reproductive Behaviour in Fish.” Hormones and Behavior 70 (April): 85–91. https://doi.org/10.1016/J.YHBEH.2015.03.002.
Caldeira, Ken, and Michael E. Wickett. 2003. “Anthropogenic Carbon and Ocean PH.” Nature 2003 425:6956 425 (6956): 365–365. https://doi.org/10.1038/425365a.
Chen, Jiangfei, Xue Ma, Linjie Tian, Aijun Kong, Nengzhuang Wang, Changjiang Huang, and Dongren Yang. 2018. “Chronic Co-Exposure to Low Levels of Brominated Flame Retardants and Heavy Metals Induces Reproductive Toxicity in Zebrafish:” Https://Doi.Org/10.1177/0748233718779478 34 (9): 631–39. https://doi.org/10.1177/0748233718779478.
Cunningham, Rebecca L., Augustus R. Lumia, and Marilyn Y. McGinnis. 2012. “Androgen Receptors, Sex Behavior, and Aggression.” Neuroendocrinology 96 (2): 131–40. https://doi.org/10.1159/000337663.
Darrow, Kiersten O., and William A. Harris. 2004. “Characterization and Development of Courtship in Zebrafish, Danio Rerio.” Https://Home.Liebertpub.Com/Zeb 1 (1): 40–45. https://doi.org/10.1089/154585404774101662.
De-Santis, Christian, and Dean R. Jerry. 2007. “Candidate Growth Genes in Finfish — Where Should We Be Looking?” Aquaculture 272 (1–4): 22–38. https://doi.org/10.1016/J.AQUACULTURE.2007.08.036.
Falahatkar, Bahram, Mohaddeseh Bagheri, and Iraj Efatpanah. 2019. “The Effect of Stocking Densities on Growth Performance and Biochemical Indices in New Hybrid of Leuciscus Aspius ♀ × Rutilus Frisii ♂.” Aquaculture Reports 15 (November): 100207. https://doi.org/10.1016/J.AQREP.2019.100207.
Fitzer, Susan C., Gary S. Caldwell, Andrew J. Close, Anthony S. Clare, Robert C. Upstill-Goddard, and Matthew G. Bentley. 2012. “Ocean Acidification Induces Multi-Generational Decline in Copepod Naupliar Production with Possible Conflict for Reproductive Resource Allocation.” Journal of Experimental Marine Biology and Ecology 418–419 (May): 30–36. https://doi.org/10.1016/J.JEMBE.2012.03.009.
Fivelstad, Sveinung, Kristin Kvamme, Sigurd Handeland, Magne Fivelstad, Anne Berit Olsen, and Camilla Diesen Hosfeld. 2015. “Growth and Physiological Models for Atlantic Salmon (Salmo Salar L.) Parr Exposed to Elevated Carbon Dioxide Concentrations at High Temperature.” Aquaculture 436 (January): 90–94. https://doi.org/10.1016/J.AQUACULTURE.2014.11.002.
Frommel, Andrea Y., Rommel Maneja, David Lowe, Arne M. Malzahn, Audrey J. Geffen, Arild Folkvord, Uwe Piatkowski, Thorsten B. H. Reusch, and Catriona Clemmesen. 2011. “Severe Tissue Damage in Atlantic Cod Larvae under Increasing Ocean Acidification.” Nature Climate Change 2011 2:1 2 (1): 42–46. https://doi.org/10.1038/nclimate1324.
Havenhand, Jon N., Fenina Raphaela Buttler, Michael C. Thorndyke, and Jane E. Williamson. 2008. “Near-Future Levels of Ocean Acidification Reduce Fertilization Success in a Sea Urchin.” Current Biology 18 (15): R651–52. https://doi.org/10.1016/J.CUB.2008.06.015.
Ishimatsu, Atsushi, Masahiro Hayashi, and Takashi Kikkawa. 2008. “Fishes in High-CO2, Acidified Oceans.” Marine Ecology Progress Series 373 (December): 295–302. https://doi.org/10.3354/MEPS07823.
Kroeker, Kristy J., Rebecca L. Kordas, Ryan N. Crim, and Gerald G. Singh. 2010. “Meta-Analysis Reveals Negative yet Variable Effects of Ocean Acidification on Marine Organisms.” Ecology Letters 13 (11): 1419–34. https://doi.org/10.1111/J.1461-0248.2010.01518.X.
Lee, K., A. Ishimatsu, H. Sakaguchi, and T. Oda. 2003. “Cardiac Output during Exposure to Chattonella Marina and Environmental Hypoxia in Yellowtail (Seriola Quinqueradiata).” Marine Biology 2003 142:2 142 (2): 391–97. https://doi.org/10.1007/S00227-002-0955-X.
Martínez-Porchas, Marcel, Luis Rafael Martínez-Córdova, and Rogelio Ramos-Enriquez. 2009. “Cortisol and Glucose: Reliable Indicators of Fish Stress?” Pan-American Journal of Aquatic Sciences 4 (2): 158–78.
Meehl GA, Stocker TF, Collins WD, Friedlingstein P, Gaye AT, Gregory JM, Kitoh A, Knutti R, Murphy JM, Noda A, Raper SCB, Watterson IG, Weaver AJ, Zhao ZC. 2007. “Global Climate Projections. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change 2007,.” Cambridge, UK: Cambridge University. 2007. https://www.osti.gov/etdeweb/biblio/20962171.
Milazzo, Marco, Carlo Cattano, Suzanne H. Alonzo, Andrew Foggo, Michele Gristina, Riccardo Rodolfo-Metalpa, Mauro Sinopoli, Davide Spatafora, Kelly A. Stiver, and Jason M. Hall-Spencer. 2016. “Ocean Acidification Affects Fish Spawning but Not Paternity at CO2 Seeps.” Proceedings of the Royal Society B: Biological Sciences 283 (1835). https://doi.org/10.1098/RSPB.2016.1021.
Nowicki, Jessica P., Gabrielle M. Miller, and Philip L. Munday. 2012. “Interactive Effects of Elevated Temperature and CO2 on Foraging Behavior of Juvenile Coral Reef Fish.” Journal of Experimental Marine Biology and Ecology 412 (January): 46–51. https://doi.org/10.1016/J.JEMBE.2011.10.020.
Olsson P.E., P. Kling, C. Hogstrand. 1998. “Metal Metabolism in Aquatic Environments.” Metal Metabolism in Aquatic Environments. https://doi.org/10.1007/978-1-4757-2761-6.
PARKER, LAURA M., PAULINE M. ROSS, and WAYNE A. O’CONNOR. 2009a. “The Effect of Ocean Acidification and Temperature on the Fertilization and Embryonic Development of the Sydney Rock Oyster Saccostrea Glomerata (Gould 1850).” Global Change Biology 15 (9): 2123–36. https://doi.org/10.1111/J.1365-2486.2009.01895.X.
Pimentel, Marta S., Filipa Faleiro, Gisela Dionísio, Tiago Repolho, Pedro Pousão-Ferreira, Jorge Machado, and Rui Rosa. 2014. “Defective Skeletogenesis and Oversized Otoliths in Fish Early Stages in a Changing Ocean.” Journal of Experimental Biology 217 (12): 2062–70. https://doi.org/10.1242/JEB.092635.
Pollock, M.S. PollockM.S., L.M.J. ClarkeL.M.J. Clarke, and M.G. DubéM.G. Dubé. 2007. “The Effects of Hypoxia on Fishes: From Ecological Relevance to Physiological Effects.” Https://Doi.Org/10.1139/A06-006 15 (March): 1–14. https://doi.org/10.1139/A06-006.
Poppe, Skylar. 2020. “Running Head: The Effects of Acid Rain on Embryonic Development of Danio Rerio The Effects of Acid Rain on Embryonic Development of Danio Rerio The Effects of Acid Rain on Embryonic Development of Danio Rerio.”
Ries, Justin B., Anne L. Cohen, and Daniel C. McCorkle. 2009. “Marine Calcifiers Exhibit Mixed Responses to CO2-Induced Ocean Acidification.” Geology 37 (12): 1131–34. https://doi.org/10.1130/G30210A.1.
Strobel, Anneli, Swaantje Bennecke, Elettra Leo, Katja Mintenbeck, Hans O Pörtner, and Felix C Mark. 2012. “Metabolic Shifts in the Antarctic Fish Notothenia Rossii in Response to Rising Temperature and P CO2.” Frontiers in Zoology 2012 9:1 9 (1): 1–15. https://doi.org/10.1186/1742-9994-9-28.
Talmage, Stephanie C., and Christopher J. Gobler. 2009. “The Effects of Elevated Carbon Dioxide Concentrations on the Metamorphosis, Size, and Survival of Larval Hard Clams (Mercenaria Mercenaria), Bay Scallops (Argopecten Irradians), and Eastern Oysters (Crassostrea Virginica).” Limnology and Oceanography 54 (6): 2072–80. https://doi.org/10.4319/LO.2009.54.6.2072.
Thorarensen, Helgi, Albert K.D. Imsland, Arnþór Gústavsson, Snorri Gunnarsson, Jón Árnasond, Agnar Steinarsson, Jeroen Bouwmans, Lisa Receveur, and Rannveig Björnsdóttir. 2018. “Potential Interactive Effects of Ammonia and CO2 on Growth Performance and Feed Utilization in Juvenile Atlantic Cod (Gadus Morhua L.).” Aquaculture 484 (February): 272–76. https://doi.org/10.1016/J.AQUACULTURE.2017.11.040.
Trudeau, V L, D Spanswick, E J Fraser, K Larivière, D Crump, S Chiu, M MacMillan, and R W Schulz. 2011. “The Role of Amino Acid Neurotransmitters in the Regulation of Pituitary Gonadotropin Release in Fish.” Https://Doi.Org/10.1139/O99-075 78 (3): 241–59. https://doi.org/10.1139/O99-075.
Tsukamoto, K, T Kawamura, T Takeuchi, T D Beard, M J Kaiser, Ian A Johnston, Daniel J Macqueen, and Shugo Watabe. 2008. “Fisheries for Global Welfare and Environment, 5th World Fisheries Congress,” 241–62.
Welch, Megan J., and Philip L. Munday. 2015. “Contrasting Effects of Ocean Acidification on Reproduction in Reef Fishes.” Coral Reefs 2015 35:2 35 (2): 485–93. https://doi.org/10.1007/S00338-015-1385-9.
Wong, Bob B.M., and Ulrika Candolin. 2015. “Behavioral Responses to Changing Environments.” Behavioral Ecology 26 (3): 665–73. https://doi.org/10.1093/BEHECO/ARU183.
Yorio, María P. Di, José A. Muñoz-Cueto, José A. Paullada-Salmerón, Gustavo M. Somoza, Kazuyoshi Tsutsui, and Paula G. Vissio. 2019. “The Gonadotropin-Inhibitory Hormone: What We Know and What We Still Have to Learn From Fish.” Frontiers in Endocrinology 0 (FEB): 78. https://doi.org/10.3389/FENDO.2019.00078.
Zohar, Yonathan, José Antonio Muñoz-Cueto, Abigail Elizur, and Olivier Kah. 2010. “Neuroendocrinology of Reproduction in Teleost Fish.” General and Comparative Endocrinology 165 (3): 438–55. https://doi.org/10.1016/J.YGCEN.2009.04.017